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Abstract
We extend two of the methods previously introduced to find discrete symmetries
of differential equations to the case of difference and differential-difference
equations. As an example of the application of the methods, we construct the
discrete symmetries of the discrete Painlevé I equation and of the Toda lattice
equation.

PACS numbers: 02.20.Sv, 02.30.Ks

1. Introduction

Symmetries have always played a very important role in the study of differential equations [1].
Lie symmetries were introduced by Sophus Lie as a tool to unify all solution techniques for
ordinary differential equations. In particular they are useful to

• get special solutions by symmetry reduction.
• classify equations according to their symmetry.
• prove equivalence of equations under point transformations.

They have been extended with success to the case of differential-difference and difference-
difference equations. As was shown in [2] the invariance of a differential-difference equation
with respect to a shift of the lattice ñ = n + N provides a reduction of the equation to a
system of N ordinary differential equations. Moreover, discrete symmetries, i.e. symmetries
associated with a discrete finite group, are very important in quantum mechanics. In this field
one speaks of parity, charge conjugation, rotations by π , etc, and one uses discrete symmetries
to provide selection rules.

Discrete symmetries are usually easy to guess but difficult to find in a systematic way.
They can be obtained by considering the normalizer of the continuous Lie point symmetries
of the equation. This is a well-known technique and can be found in many textbooks (see,
1 Permanent address: Dipartimento di Fisica, Università Roma Tre and INFN-Sezione di Roma Tre, Via della Vasca
Navale 84, 00146-Roma, Italy.
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for instance, [6]). The application to the case of differential equations has been considered in
all details by Hydon [7]. The normalizer can be obtained only in the case when a nontrivial
non-commuting group of Lie point symmetries exists.

In 1996 Gaeta and Rodrı́guez [8] introduced a modification of the Lie technique which
allows us to find discrete symmetries even when the Lie group is trivial. This technique, as
we will see in section 3, depends on a starting ansatz and thus it does not provide a complete
result.

Reid et al [3] solved the determining equations for the group transformations directly to get
the discrete symmetries. In more recent works [4, 5] they simplified the work taking advantage
of the infinitesimal results; however, the method requires extremely heavy calculations.

In section 2 we briefly summarize the steps necessary to obtain Lie symmetries for
difference equations, while in section 3 we present two of the methods introduced to obtain
discrete symmetries. As is evident from section 2 all the steps necessary to obtain the discrete
Lie symmetries are not significantly different in the case of equations on the lattice from the
continuous case. The only essential difference is in the prolongation formula. So, in section 4
we just present two examples of the derivation of discrete Lie symmetries for discrete equations.
In section 5 one can find some concluding remarks.

2. Point symmetries of discrete equations

Let us briefly summarize the steps necessary to obtain Lie point symmetries for difference
equations. More details can be found in [9, 10].

We will consider just the case of a scalar difference equation in two independent lattice
variables as this case will cover all the examples considered in section 4. The case of a
differential-difference equation is obtained from the difference-difference case by carrying
out the continuum limit in one variable.

A discrete equation of order Ni in a discrete variable x(i)
n,m, i = 1, 2, is a functional

relation between Ni + 1 points in the lattice of the variable x(i)
n,m. To be able to solve the

discrete equation apart from the functional relation, we need to know how the lattice points
are defined. This implies that we need a further four equations compatible in the case of two
independent variables and one for one independent lattice variable. Some of these equations
may be trivial if the lattice is orthogonal and with constant spacing, but are still necessary to
fix the symmetries and the solutions of the difference system.

So we have

�
(
x

(k)
n+j,m+i , un+j,m+i

) = 0 (2.1)

Ea

(
x

(k)
n+j,m+i , un+j,m+i

) = 0 (2.2)

un,m = u
(
x(1)

n,m, x(2)
n,m

)
1 � a � 4 k = 1, 2 −i1 � i � i2

−j1 � j � j2 i1, i2, j1, j2 ∈ Z�0

where � is the difference equation, Ea are the equations determining the two independent
lattice variables and n and m are some indices which characterize them. System (2.1), (2.2)
must satisfy some obvious conditions so as to be able to calculate the variables in all the lattice
plane.

A Lie point symmetry for equations (2.1), (2.2) is a point transformation

x̃(i)
n,m = F

(i)
λ

(
x(k)

n,m, un,m

)
ũn,m = Gλ

(
x(k)

n,m, un,m

)
(i, k = 1, 2) (2.3)



Lie discrete symmetries of lattice equations 1713

which leaves equations (2.1), (2.2) invariant. The symbol λ indicates the group parameters. As
this transformation acts on the entire space where the independent and dependent variables are
defined, the functions F

(i)
λ and Gλ determine the transformation everywhere. We can introduce

the corresponding infinitesimal transformations of coefficients ξ (i)
(
x(k)

n,m, un,m

)
, φ

(
x(k)

n,m, un,m

)
,

and thus write the vector field

X̂n,m = ξ (i)
(
x(k)

n,m, un,m

)
∂
x

(i)
n,m

+ φ
(
x(k)

n,m, un,m

)
∂un,m

(2.4)

and its prolongation

prX̂n,m =
j2∑

j=−j1

i2∑
l=−i1

X̂n+l,m+j . (2.5)

The invariance conditions, i.e. the necessary conditions which provide the symmetries for
equations (2.1), (2.2), are given by

prX̂n,m� = 0 when (�,Ea) = (0, 0) (2.6)

prX̂n,mEa = 0 when (�,Ea) = (0, 0). (2.7)

Equations (2.6), (2.7) are a set of equations for ξ (i) and φ. In equations (2.6), (2.7)
ξ (i) and φ will appear at various points of the lattice, which, when the equations � = 0
and Ea = 0 have been taken into account, are all independent. So we have five functional
equations for the functions ξ (i) and φ. The variables appearing in these five equations are all
independent. These independent variables appear either explicitly in the equation or in the
unknown infinitesimal coefficients. As the infinitesimal coefficients are analytic functions, we
can convert the determining equations into a system of differential equations by differentiating
them with respect to the independent variables. In such a way we get an overdetermined
system of, in general, nonlinear partial differential equations. We solve the obtained equations
and introduce their solution into the functional equations and solve them.

As an example of this procedure we will calculate the continuous symmetries of a discrete
Painlevé I equation [11]. The discrete Painlevé I equation is given by

un+1 + un + un−1 = αxn + β

un

+ γ (2.8)

where α, β and γ are arbitrary constants and un = u(xn). The equation which defines the
lattice points can be written as

xn+1 − xn = h (2.9)

so that xn = hn + x0. With the choice un = −1/2 + h2w(x), α = −h4/2, β = −3/4 and
γ = −3, equation (2.8) reduces, in the continuous limit, to

wxx = 6w2 + x (2.10)

which is the Painlevé I transcendent [12].
The infinitesimal symmetry generator is given by

X̂n = ξn(xn, un)∂xn
+ φn(xn, un)∂un

(2.11)

and its prolongation

prX̂n =
1∑

j=−1

X̂n+j . (2.12)

Applying equation (2.12) to the lattice equation (2.9) we get

ξn+1(xn+1, un+1) = ξn(xn, un) (2.13)
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which, taking into account that un and un+1 are independent variables, gives that ξn cannot
depend on un and, as a function of n, must be a constant (cannot vary between different points
of the lattice)

ξn = K0. (2.14)

In a similar way, by applying (2.12) to equation (2.8) we get

−K0α

un

+ φn+1(xn+1, un+1) + φn(xn, un) + φn−1(xn−1, un−1) +
αxn + β

u2
n

φn(xn, un) = 0

(2.15)

where

un−1 = αxn + β

un

+ γ − un+1 − un (2.16)

and differentiating (2.15) with respect to un and un+1, one can prove that

φn(xn, un) = φ(0)
n (xn) + unφ

(1)
n (xn) (2.17)

where φ(0)
n and φ(1)

n satisfy the following equations

φ
(1)
n−1 = φ(1)

n (2.18)

(αxn + β)
(
φ(1)

n + φ
(1)
n−1

) = αK0 (2.19)

(αxn + β)φ(0)
n = 0 (2.20)

φ
(0)
n+1 + φ(0)

n + φ
(0)
n−1 + γφ

(1)
n−1 = 0. (2.21)

According to the values of the parameters (α, β and γ ) we have various possibilities:

• If α �= 0 then from equation (2.19) K0 = 0 and φ(1)
n = 0. From equation (2.20) φ(0)

n = 0
and thus no symmetry is present.

• If α = 0 but β �= 0 then from equation (2.19), φ(1)
n = 0 and from equation (2.20),

φ(0)
n = 0; so only K0 �= 0, i.e. only space translations are possible.

• If α = 0, β = 0 equations (2.19), (2.20) are identically satisfied; equation (2.18) implies
that φ(1)

n = K1 and [13]

φ(0)
n = −γK1

3
+ K2

[
1

2
(i
√

3 − 1)

]n

+ K3

[
−1

2
(i
√

3 + 1)

]n

. (2.22)

So in this case now the linear equation has a four-dimensional symmetry group.

To end this section let us consider the case of symmetries of differential-difference
equations. The transition from a difference-difference equation to a differential-difference
equation is done by carrying out the continuum limit for a lattice variable, say x(1)

n,m = tn,m,
when the distance between the points along this direction goes to zero and the lattice index goes
to infinity in such a way that the position t remains finite. This implies that the corresponding
lattice spacing τ cannot be modified by a point transformation but it is a fixed number which
can tend to zero. So, for example, the lattice variable tn,m cannot be described by dilation
invariant equations such as

tn+1,m − 2tn,m + tn−1,m = 0 tn,m+1 − tn,m = 0 (2.23)

as in this case the parameter τ is an integration constant and not a parameter of the equations.
Let us choose, consequently, the lattice equations for the variable tn,m as

tn+1,m − tn,m = τ tn,m+1 − tn,m = 0. (2.24)
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The solution of equation (2.24) reads

t ≡ tn,m = τn + t0 (2.25)

where, in all generality, we can set t0 = 0. As for the remaining lattice variable x(2)
n,m = xn,m,

its position is not changing in time, i.e.

xn+1,m − xn,m = 0 (2.26)

while its variation along the lattice, i.e. along m, can depend on t and on un,m in a way that is
defined by one of the equations (2.2), say E1 = 0.

The continuous limit is obtained by considering n → ∞ as τ → 0. In such a limit
the variables xn,m and un,m will no longer depend on n; equation (2.1), if it has the proper
dependence on τ , will reduce to a differential-difference equation for um = u(t, xm) and
equations (2.2) will reduce to just one equation for the lattice variable xm,E1 = 0, while the
other equations (2.24), (2.26) are identically satisfied in the limit.

In this limit the symmetry vector X̂n,m, given by equation (2.5), reduces to X̂m, which
will inherit the properties of X̂n,m as applied to the lattice equations (2.24), (2.26) even if these
equations in the limit reduce to 0 ≡ 0. Applying equation (2.6) to equations (2.24), (2.26),
with x(1)

n,m = tn,m and x(2)
n,m = xn,m, we get the following three determining equations:

ξ (1)(tn,m + τ, xn+1,m, un+1,m) = ξ (1)(tn,m, xn,m, un,m) (2.27)

ξ (1)(tn,m, xn,m+1, un,m+1) = ξ (1)(tn,m, xn,m, un,m) (2.28)

ξ (2)(tn,m + τ, xn+1,m, un+1,m) = ξ (2)(tn,m, xn,m, un,m). (2.29)

As the differential-difference equation will involve at least un+1,m, un,m, un,m+1, we can always
take un,m, un,m+1 as independent variables and express un+1,m in their terms. By differentiating
equation (2.27) with respect to un,m+1 we get ξ (1)(tn,m, xn,m). By a similar reasoning for the
variable xn,m we can reduce the function ξ (1) to ξ (1)(tn,m), i.e. the function ξ (1) is just a function
of t. In a similar way we will find that

X̂n,m = ξ (1)(tn,m)∂tn,m
+ ξ (2)(tn,m, xn,m)∂xn,m

+ φ(tn,m, xn,m, un,m)∂un,m
(2.30)

and thus, in the continuum limit, we must have

X̂m = ξ (1)(t)∂t + ξ (2)(t, xm)∂xm
+ φ(t, xm, um)∂um

. (2.31)

3. The calculus of discrete symmetries

We will now discuss two methods of determining the discrete symmetries of differential
equations. One of them was proposed by Hydon [7, 14], and it is essentially the classical
method of constructing the normalizer of a group. The other, due to Gaeta and Rodrı́guez
[8], is a modification of Lie’s method, defining a discrete symmetry as a discretization of
the parameter of a continuous symmetry. There are at least two other methods to construct
discrete symmetries. One of them is based on a formulation of differential equations through
differential forms [15] and the other [3–5] solves the determining equations for the group
transformations directly. They will not be considered in this work.

3.1. Automorphisms of the symmetry algebra

Let us consider a differential equation for a dependent variable u and N independent variables
x = (x1, . . . , xN), with a Lie group of symmetries, G, and its corresponding Lie algebra G.
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We construct all the automorphisms of this Lie algebra. Some of them will, obviously,
correspond to continuous symmetries. Others will be essentially new and will define discrete
symmetries of the equation. And, finally, others will not be symmetries of the equation. These
ideas are very well known in the theory of Lie algebras and groups. Inner automorphisms
correspond to conjugation by elements of the group, while outer automorphisms have not this
character. See, for instance, [6] where the complete and general Lorentz group are obtained
in this way from the proper Lorentz group.

Let G be a Lie algebra of finite dimension n and B = {X1, . . . , Xn} be a basis of G. The
commutation relations in this basis can be written as

[Xi,Xj ] = ck
ijXk (3.1)

where ck
ij are the structure constants of G (a sum is understood over repeated indices running

from 1 to n).
The defining equation for an automorphism φ : G −→ G is

φ[X, Y ] = [φ(X), φ(Y )] (3.2)

which, in the basis B, reads

φ[Xi,Xj ] = ck
ijφ(Xk) = [φ(Xi), φ(Yj )]. (3.3)

Let � be the matrix representation of φ in the basis B (det � �= 0). Then

φ(Xi) = �
j

iXj (3.4)

and equation (3.3) is written as

ck
ij�

l
k = �m

i�
r
j c

l
mr (3.5)

for all indices i, j, l (the equation is skewsymmetric in i, j ). If we define the matrices of the
adjoint representation

C(i)kj = ck
ij (3.6)

equation (3.5) can also be written as

�C(i) = �l
iC(l)�. (3.7)

Automorphisms which are related through conjugation by an element of the symmetry group
will be considered equivalent. Thus the matrix � can be simplified by conjugations with the
symmetry transformations (at least if the algebra is not Abelian). This can be done in terms
of the adjoint representation.

Let us consider those elements gi ∈ G which are generated by an element Xi of the basis
B of the corresponding Lie algebra G,

gi = eλXi . (3.8)

The conjugation provides the transformation

φ → e−λXi φ eλXi . (3.9)

We can consider the transformation of the elements of the basis B and we have

e−λXi Xj eλXi = A(i, λ)kjXk. (3.10)

It is not difficult to show that

A(i, λ) = eλC(i). (3.11)

We can apply the transformations (3.11)

� → eλC(i)� (3.12)

to simplify the matrix �.
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We can now construct a representation of the automorphism in the space of variables. Let
X be a vector field given by (the index a runs from 1 to N)

X = ξa(x, u)∂xa
+ ϕ(x, u)∂u (3.13)

which is a symmetry of the equation under study, and let us consider a symmetry, given by the
transformation

(x, u) → (x̂(x, u), û(x, u)). (3.14)

The vector field X is transformed into a new vector field

X̂ = ξ̂ a(x̂, û)∂x̂a
+ ϕ̂(x̂, û)∂û. (3.15)

As the transformation is a symmetry of the equation, X̂ must have the same form in the new
variables,

X̂ = ξa(x̂, û)∂x̂a
+ ϕ(x̂, û)∂û. (3.16)

If we consider a basis of the symmetry algebra, {Xi}, i = 1, . . . , n, the transformed vector
fields are

X̂i = ξa
i (x̂, û)∂x̂a

+ ϕi(x̂, û)∂û (3.17)

and, as the transformation is an automorphism of the algebra,

X̂i = �
j

iXj . (3.18)

Applying (3.18) to the new variables, we get

X̂i x̂a = ξa
i (x̂, û) = �

j

iXj x̂a = �
j

i

(
ξb
j (x, u)

∂x̂a

∂xb

+ ϕj (x, u)
∂x̂a

∂u

)
(3.19)

and

X̂i û = �i(x̂, û) = �
j

iXj û = �
j

i

(
ξb
j (x, u)

∂û

∂xb

+ ϕj (x, u)
∂û

∂u

)
(3.20)

or

ξb
j (x, u)

∂x̂a

∂xb

+ ϕj (x, u)
∂x̂a

∂u
= (�−1)ij ξ

a
i (x̂, û)

(3.21)
ξb
j (x, u)

∂û

∂xb

+ ϕj (x, u)
∂û

∂u
= (�−1)ijϕi(x̂, û).

We have to solve equations (3.21) to find the expression of the automorphism as a
transformation in our space of variables and functions. After, we must check if the
automorphism is a symmetry of the equation and that it does not correspond to a continuous
symmetry.

3.2. Determining the equation for a discrete symmetry

We will now consider the method of the discretization of the parameter of a continuous
transformation. Let us briefly review how the method works. To simplify the description (see
[8] for a detailed exposition), let us consider a smooth curve in R2, y = f (x) and a vector
field

X = ξ(x, y)∂x + ϕ(x, y)∂y. (3.22)

The point (x, y) is transformed under the infinitesimal action as

x ′ = x + λξ(x, y) y ′ = y + λϕ(x, y) (3.23)
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and the graph of our curve is transformed into a new one, defined by the transformed function

fλ(x) = f (x) + λ[ϕ(x, y) − ξ(x, y)∂xf (x)]. (3.24)

If we introduce a function F(x; λ) such that F(x; λ) = fλ(x), F , taking into account (3.24),
will satisfy the partial differential equation

∂F (x; λ)

∂λ
+ ξ(x, F (x; λ))

∂F (x; λ)

∂x
= ϕ(x, F (x; λ)). (3.25)

In order to recover the original function, we have to impose the initial condition

F(x; 0) = f (x) (3.26)

and if we want to obtain the same function for a particular value λ0 of the parameter and hence
a discrete symmetry

F(x; λ0) = F(x; 0) = f (x). (3.27)

This is equivalent to finding periodic solutions of equation (3.25). This equation is a functional
equation and hard to solve.

If we consider a differential equation instead of the graph of a function, we have to pose
the same question in the appropriate jet space [1]. The answer is simpler in this case, as the
right-hand side of equation (3.25) is computed from the prolongation of the vector field under
consideration.

Let us consider a differential equation,

∂J u = f (x, u, ∂J ′u, . . .) (3.28)

where J = (j1, . . . , jN) and ∂J u = ∂
j1
x1 · · · ∂jN

xN
u, J = (j1, . . . , jN).

The determining equation, used to describe the discrete symmetries, is then

∂F

∂λ
+

∑
i

ξi

∂F

∂xi

+
∑
J ′

φJ ′ ∂F

∂uJ ′
= φJ

∣∣∣∣
∂J u=F

(3.29)

where φJ ′
are the J ′-prolongations of the vector field (3.13) and one has to rewrite

equation (3.28) in terms of F. Then one looks for periodic solutions of this equation in λ.
For instance, consider a differential equation of the following type

utt = f (x, u, ut ). (3.30)

Choosing F = F(x, u, ut ; λ) = utt , the determining equation is

∂F

∂λ
+

∑
i

ξi

∂F

∂xi

+ φ
∂F

∂u
+ φt ∂F

∂ut

= φtt

∣∣∣∣
∂tt u=F

(3.31)

and

F(x, u, ut ; 0) = F(x, u, ut ; λ0) = f (x, u, ut ) (3.32)

for some λ0.
To apply this method we do not need to know the continuous symmetries. In fact, the

determining equation provides a general solution which does not depend on the differential
equation we are studying. The equation appears when we impose the boundary condition as
in (3.26) and the discrete symmetries by requiring equation (3.27). However, we have to make
some assumptions to get a solution of the equation, because we do not know the symmetries
which appear in it. We will use this method to determine the discrete symmetries of the
Painlevé I equation (2.8).
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4. Lie discrete symmetries of lattice equations

The construction (shown in section 2) of point symmetries of discrete equations is very similar
to the standard approach to point symmetries of continuous equations [1]. The main difference
lies in the form of the prolongation and in the way we solve the determining equations.
Consequently, the procedure presented in section 3 for constructing discrete symmetries of
continuous equations can be carried over in a straightforward manner to the discrete case, just
by changing the form of the prolongation. So, in the following we will just apply the methods
discussed in section 3 to two examples of equations of mathematical physics, the discrete
Painlevé equation (2.8) and the Toda equation [16]. The Painlevé equation, as we have shown
in section 2, has no continuous symmetry (for a generic choice of the parameters), and we will
use the determining equation method to find its discrete symmetries. In the Toda equation we
have a continuous group of symmetries [17, 18], and we will construct the discrete symmetries
by computing the automorphisms of the corresponding Lie algebra.

4.1. Discrete Painlevé equation

As we have said in the introduction to this section, the discrete Painlevé I equation (2.8) has
no continuous symmetry so that we cannot apply the method of the normalizer.

We define the extended λ-dependent equation in the transformed space as

û+ + û− = F(x̂, û; λ) (4.1)

where, for λ = 0

F(x̂, û; 0) = −u +
αx + β

u
+ γ. (4.2)

For the sake of simplicity, we have used the notation

x = xn x+ = xn+1 x− = xn−1

u = u(xn) u+ = u(xn+1) u− = u(xn−1).

The generic Lie point transformation, written in terms of the infinitesimal symmetry
generators, is

dx̂

dλ
= ξ(x̂, û)

dû

dλ
= φ(x̂, û). (4.3)

We consider the same definition of the lattice (2.9) that we used for constructing the Lie point
symmetries in section 2. So we have ξ = K0. Differentiating equation (4.1) with respect to λ

and taking into account equation (4.3) we get (3.31)

∂F

∂λ
+ K0

∂F

∂x̂
+ φ(x̂, û)

∂F

∂û
= φ(x̂+, û+) + φ(x̂−, F − û+). (4.4)

By differentiating equation (4.4) with respect to û+ and û we get

φ(x̂, û) = φ(0)(x̂) + ûφ(1)(x̂). (4.5)

Substituting equation (4.5) into equation (4.4) and requiring that the obtained equation be
satisfied for any u+, we get

φ(1)(x) = K1 + K2(−1)
x̂−x̂0

h . (4.6)

Equation (4.4) is now reduced to a linear partial differential equation of first order which can
be solved on the characteristics:

dλ

1
= dx̂

K0
= dû

φ(0) + ûφ(1)
= dF

φ
(0)
+ + φ

(0)
− + φ

(1)
− F

(4.7)
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where

φ(i) = φ(i)(x) φ(i)
+ = φ(i)(x+) φ

(i)
− = φ(i)(x−) i = 0, 1. (4.8)

The first invariant is

x̂ = x + K0λ. (4.9)

The action of this transformation on the discrete Painlevé equation (2.8) corresponds just to a
change in the parameter β. We could carry out the calculation with K0 �= 0, but for the sake
of clarity of the presentation, we have set K0 = 0 as this transformation cannot provide any
discrete Lie transformation. Consequently, φ(i) will not depend on λ.

The next invariant is obtained by integrating equation (4.7) for û as a function of λ. We
have

û = eλφ(1)

[
u +

φ(0)

φ(1)

(
1 − e−λφ(1))]

. (4.10)

The integration of equation (4.7) for F satisfying the boundary conditions (4.2) gives

F(x̂, û; λ) = eλφ
(1)
−

[
φ(0)

φ(1)

(
1 − e−λφ(1))

+
αx̂ + β

û e−λφ(1) − φ(0)

φ(1)

(
1 − e−λφ(1)

) + γ

]

− û eλ[φ(1)
− −φ(1)] − φ

(0)
+ + φ

(0)
−

φ
(1)
−

(
1 − eλφ

(1)
−

)
. (4.11)

To get a discrete Lie symmetry we require that there exists a value of λ, say λ0, such that

F(x̂, û; 0) = F(x̂, û; λ0). (4.12)

If we want (4.12) to be satisfied, we need

(φ
(1)
− − φ(1))λ0 = 2π iN N ∈ Z (4.13)

φ(0)
(
1 − eλ0φ

(1)) = 0. (4.14)

From (4.13) we obtain K2 = 0 and then, φ(1) = K1. Equation (4.14) is solved by requiring
one or the other of the following two conditions:

λ0K1 = 2π iN N ∈ Z (4.15)

φ(0) = 0. (4.16)

In the case of condition (4.15), equation (4.12) is satisfied. However, this provides no discrete
symmetry.

Let us go over to the second condition (4.16). If γ �= 0, equation (4.12) implies
equation (4.15), i.e. no discrete symmetry is present. If γ = 0, then K1λ0 = iπN , providing
a discrete symmetry û = ±u even in the case when no continuous symmetry is present.
However, in this case, the continuum limit of this difference equation is not Painlevé I.

4.2. Discrete symmetries of the Toda equation

Let us consider as our second example the Toda equation:

utt = eu+−u − eu−u− (4.17)

where x± = x ± h, u± = u(x ± h, t) and h is the lattice step (see equation (2.9)).
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As is well known [17–19], the following operators form a basis of the symmetry algebra
of the Toda equation:

X1 = ∂u X2 = ∂x X3 = ∂t X4 = t∂u X5 = t∂t − 2x

h
∂u. (4.18)

The nonzero commutation relations are

[X2, X5] = − 2

h
X1 [X3, X4] = X1 [X3, X5] = X3 [X4, X5] = −X4 (4.19)

and the matrices C(i) of the adjoint representation are

C(1) = 0 C(2) =




· · · · −2/h

· · · · ·
· · · · ·
· · · · ·
· · · · ·


 C(3) =




· · · 1 ·
· · · · ·
· · · · 1
· · · · ·
· · · · ·




C(4) =




· · −1 · ·
· · · · ·
· · · · ·
· · · · −1
· · · · ·


 C(5) =




· 2/h · · ·
· · · · ·
· · −1 · ·
· · · 1 ·
· · · · ·


 .

(4.20)

Applying equation (3.7) we get

b21 = b23 = b24 = b31 = b41 = b51 = b53 = b54 = 0 (4.21)

where, to simplify the notation we have written �i
j = bij . The most significant remaining

equations are

b34(b55 + 1) = b44(b55 − 1) = b33(b55 − 1) = b43(b55 + 1) = 0 (4.22)

b11 = b33b44 − b34b43. (4.23)

The determinant of � must be different from zero (φ is an automorphism) and consequently,
taking into account equation (4.21), we must have b11 �= 0. Using equation (4.22) we conclude
that b55 = ±1. We will distinguish two cases:

(a) b55 = 1. In this case, b34 = b43 = 0 and b33 �= 0, b44 �= 0. The other elements of the
matrix � must satisfy the equations

b32 = b42 = b52 = 0 b13 = b33b45

b14 = b35b44 b11 = b22 = b33b44.
(4.24)

The matrix �1 = �(b55 = 1) is

�1 =




b33b44 b12 b33b45 b35b44 b15

0 b33b44 0 0 b25

0 0 b33 0 b35

0 0 0 b44 b45

0 0 0 0 1


 . (4.25)

(b) b55 = −1. Now, b33 = b44 = 0 and b34 �= 0, b43 �= 0. The other elements satisfy the
equations

b32 = b42 = b52 = 0 b13 = −b35b43

b14 = −b34b45 b11 = −b22 = −b34b43.
(4.26)
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The matrix �2 = �(b55 = −1) is

�2 =




−b34b43 b12 −b35b43 −b34b45 b15

0 b34b43 0 0 b25

0 0 0 b34 b35

0 0 b43 0 b45

0 0 0 0 −1


 . (4.27)

To simplify the matrix � we will conjugate the automorphism using the continuous
transformations in the adjoint representation.

The exponentials of the matrices C(i) are easy to find. Using C(3) we can put b35 = 0,
with C(4), b45 = 0, C(5) gives b12 = 0, and, finally using C(2), b15 = 0. Then, the simplified
�1 is

�1 =




b33b44 0 0 0 0
0 b33b44 0 0 b25

0 0 b33 0 0
0 0 0 b44 0
0 0 0 0 1


 b33, b44 �= 0. (4.28)

The same procedure can be used with �2 and the result is

�2 =




−b34b43 0 0 0 0
0 b34b43 0 0 b25

0 0 0 b34 0
0 0 b43 0 0
0 0 0 0 −1


 b34, b43 �= 0. (4.29)

The following step is to realize the automorphisms in the space of the variables and
functions of the Toda equation. We have to solve the following system of equations:

τj (t, x, u)
∂t̂

∂t
+ ξj (t, x, u)

∂t̂

∂x
+ ϕj (t, x, u)

∂t̂

∂u
= (�−1)ij τi(t̂ , x̂, û)

τj (t, x, u)
∂x̂

∂t
+ ξj (t, x, u)

∂x̂

∂x
+ ϕj (t, x, u)

∂x̂

∂u
= (�−1)ij ξi(t̂ , x̂, û) (4.30)

τj (t, x, u)
∂û

∂t
+ ξj (t, x, u)

∂û

∂x
+ ϕj (t, x, u)

∂û

∂u
= (�−1)ijϕi(t̂ , x̂, û)

where j = 1, . . . , 5. In case (a),

�−1
1 =




µν 0 0 0 0
0 µν 0 0 σ

0 0 µ 0 0
0 0 0 ν 0
0 0 0 0 1


 µ, ν �= 0. (4.31)

Then, for j = 1, X1 = ∂u

∂t̂

∂u
= 0

∂x̂

∂u
= 0

∂û

∂u
= µν. (4.32)

For j = 2, X2 = ∂x

∂t̂

∂x
= 0

∂x̂

∂x
= µν

∂û

∂x
= 0. (4.33)
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For j = 3, X3 = ∂t

∂ t̂

∂t
= µ

∂x̂

∂t
= 0

∂û

∂t
= 0. (4.34)

For j = 4, X4 = t∂u

t
∂ t̂

∂u
= 0 t

∂x̂

∂u
= 0 t

∂û

∂u
= νt̂ . (4.35)

For j = 5, X5 = t∂t − 2x
h

∂u

t
∂t̂

∂t
− 2x

h

∂t̂

∂u
= t̂ t

∂x̂

∂t
− 2x

h

∂x̂

∂u
= σ t

∂û

∂t
− 2x

h

∂û

∂u
= −2x̂

h
. (4.36)

The solution of equations (4.32), (4.33) and (4.34) is

t̂ = µt + α x̂ = µνx + β û = µνu + γ. (4.37)

Substituting in (4.35) we get α = 0 and in (4.36) we get σ = 0 and β = 0. The translation in
u is a continuous symmetry so the possible discrete symmetries are

t̂ = c1t x̂ = c2x û = c2u c1, c2 �= 0. (4.38)

Finally, we check if this transformation is a symmetry of the equation. To do so, we apply
it to the Toda equation (4.17). The Toda equation in the new variables reads

c2
1

c2
ût̂ t̂ = exp

(
1

c2

[
û

(
t̂ , x̂ +

ĥ

c2

)
− û(t̂ , x̂)

])
− exp

(
1

c2

[
û(t̂ , x̂) − û

(
t̂ , x̂ − ĥ

c2

)])

(4.39)

with ĥ = c2h. Then, c2 = ±1, c1 = ±1 are the only admissible solutions. When
c2 = 1, c1 = −1, we obtain a discrete symmetry, given by the transformation:

t̂ = −t x̂ = x û = u. (4.40)

When c2 = −1, c1 = 1, we get another discrete symmetry:

t̂ = t x̂ = −x û = −u. (4.41)

It is easy to check that the automorphism of case (b) cannot be realized in the representation
under consideration.

If we require that the discrete symmetries be preserved under the transformation which
carries the Toda lattice into the Korteweg–de Vries equation [18, 19], we get that c2 = c1. So
only one symmetry is preserved in the continuous limit.

The existence of discrete symmetries is associated with the existence of admissible
boundary conditions. In the case of the Toda lattice, the discrete symmetry (4.40) allows us to
construct solutions invariant under time inversion while the existence of solutions symmetric
with respect to the origin is due to the symmetry (4.41).

5. Conclusions

In this paper we have shown that the two methods, the automorphisms of the symmetry algebra
[14] and the determining equation for discrete symmetries [8], provide discrete symmetries,
even in the case of discrete equations. To verify the theory presented in this paper many
problems have been considered. We have just shown here the more significant examples.
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There are some drawbacks for both methods.

• In the case of the automorphism method, if the symmetry group is very large, the matrices
involved become big and the final defining equations are very overdetermined and, in
some cases, may need symbolic manipulation programmes to carry out the calculations.
Moreover, the method is not applicable if there are no continuous symmetries, as is the
case, for example, for the Painlevé equations. It is worthwhile to note that in the case of the
Toda lattice, we have obtained a non-obvious discrete symmetry using these techniques.

• In the case of the determining equation method, the equation for the function F can
sometimes be undetermined. For example, in the case of the Volterra equation

ut = u(u+ − u−) (5.1)

having chosen F = F(t, u, u+, u−; λ) = ut the determining equation to solve is

∂F

∂λ
+ τ(t)

∂F

∂t
+ φ(t, u)

∂F

∂u
+ φ(t, u+)

∂F

∂u+
+ φ(t, u−)

∂F

∂u−
= φt + (φu − τ ′)F. (5.2)

We have no hint of the form of φ(t, u) and, consequently, equation (5.2) is not solvable.
Of course, one could try to introduce an ansatz for this function and may find some
discrete symmetries. However, as one can easily show using the automorphism method,
the Volterra equation has no discrete symmetries and an ansatz will not provide any
conclusion.

Work is in progress to apply the other techniques mentioned at the beginning of section 3
and for the construction of lattices and discrete equations with prescribed discrete symmetries,
a problem of interest in chemistry and quantum mechanics. Another topic which attracts our
attention is the study of solutions of discrete equations invariant under a discrete symmetry
group.
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